organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-(3-Carboxyphenyl)pyridinium nitrate

Long Tang, Ya-Pan Wu, Feng Fu,* Zhu-Lian Zhang and Hai-Kang Guo

Department of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China Correspondence e-mail: yadxgncl@126.com

Received 22 March 2012; accepted 30 March 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.050; wR factor = 0.127; data-to-parameter ratio = 13.0.

In the title salt, $C_{12}H_{10}NO_2^+ \cdot NO_3^-$, the dihedral angle between the pyridine ring and the benzene ring of the 4-(3carboxyphenyl)pyridinium cation is 30.14 (2)°. Inversionrelated pairs of cations are linked into dimers by pairs of O-H···O hydrogen bonds. Pairs of dimers are linked by N- $H \cdots O$ and $C - H \cdots O$ hydrogen bonds involving nitrate anions as acceptors, generating supramolecular chains along the diagonal of the *bc* plane.

Related literature

For structures of similar compounds, see: Jin et al. (2003); Bei et al. (2004); Rademeyer (2005); Wang (2006); Yu et al. (2006).

c = 16.469 (3) Å

 $\alpha = 97.39(3)^{\circ}$

 $\beta = 92.96 \ (5)^{\circ}$

 $\gamma = 106.05$ (3)

V = 580.0 (2) Å³

Experimental

Crystal data

$C_{12}H_{10}NO_2^+ \cdot NO_3^-$
$M_r = 262.22$
Triclinic, P1
a = 5.2545 (11) Å
b = 7.0617 (14) Å

```
Z = 2
Mo K\alpha radiation
\mu = 0.12 \text{ mm}^{-1}
```

Data collection

Bruker SMART diffractometer	4634 measured reflections
Absorption correction: multi-scan	2255 independent reflections
(SADABS; Sheldrick, 1996)	1599 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.982, \ T_{\max} = 0.988$	$R_{\rm int} = 0.042$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.050$	174 parameters
$wR(F^2) = 0.127$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$
2255 reflections	$\Delta \rho_{\rm min} = -0.22 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C10−H10···O4 ⁱ	0.93	2.42	3.225 (3)	145
C11-H11···O5 ⁱⁱ	0.93	2.49	3.122 (3)	125
O1-H1···O2 ⁱⁱⁱ	0.82	1.82	2.624 (2)	167
$N2-H2\cdots O4^{ii}$	0.86	1.89	2.748 (3)	174

T = 293 K

 $0.15 \times 0.13 \times 0.10 \text{ mm}$

Symmetry codes: (i) x + 1, y + 1, z; (ii) -x + 1, -y + 1, -z; (iii) -x, -y + 3, -z + 1.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This project was supported by the Natural Scientific Research Foundation of Shaanxi Provincial Education Office of China (Nos. 2010 JK905, 2010JK903).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2401).

References

Bei, F. L., Yang, X. J., Lu, L. D. & Wang, X. (2004). J. Mol. Struct. 689, 237-243. Bruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

- Jin, Z. M., Li, Z. G., Li, M. C., Hu, M. L. & Shen, L. (2003). Acta Cryst. E59, 0903-0904
- Rademeyer, M. (2005). Acta Cryst. E61, o2496-o2498.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, D.-Q. (2006). Acta Cryst. E62, o2181-o2182.
- Yu, Y.-Q., Ding, C.-F., Zhang, M.-L., Li, X.-M. & Zhang, S.-S. (2006). Acta Cryst. E62, o2187-o2189.

supplementary materials

Acta Cryst. (2012). E68, o1322 [doi:10.1107/S1600536812013918]

4-(3-Carboxyphenyl)pyridinium nitrate

Long Tang, Ya-Pan Wu, Feng Fu, Zhu-Lian Zhang and Hai-Kang Guo

Comment

The title compound consists of a 3-(pyridin-4-yl)benzoic acid cation and a nitrate anion (Fig. 1). The nitric acid is deprotonated and the pyridine ring accepts the proton to produce the protonated organic cation, namely 3-(pyridin-4-yl)benzoic acid nitrate. The dihedral angle between pyridine ring and the benzene ring of the 3-(pyridin-4-yl)benzoic acid is 30.14 (2)°. The two components are linked by O—H···O [O1—H1···O2, 2.624 (2) Å] hydrogen bonds to form the cation dimers (Fig. 2), and further though N—H···O and C—H···O [N2—H2···O4, 2.748 (3) Å; C10—H10···O4, 3.225 (3) Å; C11—H11···O5, 3.122 (3)Å] hydrogen bonds. The cation dimers are thus connected by the nitrate anions into extended one-dimensional supramolecular chains (Fig. 2).

Experimental

The title compound was prepared by a hydrothermal method. An aqueous solution (20 mL) containing 3-(pyridin-4yl)benzoic acid (0.10 mmol) and samarium nitrate hexahydrate (0.10 mmol) was placed in a Parr Teflon-lined stainless steel vessel (25 mL) under autogenous pressure, and then heated to 433 K for 72 h and subsequently cooled to room temperature at a rate of 5 K an hour. The targeted Sm³⁺ complex was not synthesized. Unintentionally, colorless single crystals of the title compound suitable for X-ray analysis were obtained from the reaction mixture.

Refinement

All H atoms were positioned geometrically (C-H = 0.93Å, O-H = 0.82 Å and N-H = 0.86 Å) and allowed to ride on their parent atoms, with $U_{iso}(H)$ values equal to $1.2U_{eq}(C, N)$ or $1.5U_{eq}(O)$.

Computing details

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT* (Bruker, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

Thermal ellipsoid plot of the title compound (30% probability level), hydrogen atoms are drawn as spheres of arbitrary radius.

Figure 2

The one-dimensional hydrogen-bonded supramolecular chains in the crystal structure. Dashed lines denote hydrogen bonds.

4-(3-Carboxyphenyl)pyridinium nitrate

Crystal data	
$C_{12}H_{10}NO_2^+ \cdot NO_3^-$	Z = 2
$M_r = 262.22$	F(000) = 272
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.502 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 5.2545 (11) Å	Cell parameters from 2373 reflections
b = 7.0617 (14) Å	$\theta = 3.0-27.5^{\circ}$
c = 16.469 (3) Å	$\mu = 0.12 \text{ mm}^{-1}$
$\alpha = 97.39(3)^{\circ}$	T = 293 K
$\beta = 92.96(5)^{\circ}$	Block, colourless
$\gamma = 106.05 (3)^{\circ}$	$0.15 \times 0.13 \times 0.10 \text{ mm}$
V = 580.0 (2) Å ³	

Data collection

Bruker SMART diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.982, T_{\max} = 0.988$ Refinement	4634 measured reflections 2255 independent reflections 1599 reflections with $I > 2\sigma(I)$ $R_{int} = 0.042$ $\theta_{max} = 26.0^{\circ}, \theta_{min} = 3.0^{\circ}$ $h = -4 \rightarrow 6$ $k = -8 \rightarrow 8$ $l = -20 \rightarrow 17$
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.127$ S = 1.00 2255 reflections 174 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.063P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.20$ e Å ⁻³ $\Delta\rho_{min} = -0.22$ e Å ⁻³ Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc*=kFc[1+0.001xFc ² \lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.039 (7)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N2	0.5337 (3)	0.8423 (2)	0.07114 (11)	0.0357 (4)	
H2	0.6254	0.8387	0.0295	0.043*	
02	0.1639 (3)	1.3909 (2)	0.43108 (10)	0.0541 (5)	
01	-0.2183 (3)	1.2586 (2)	0.48279 (11)	0.0555 (5)	
H1	-0.1765	1.3685	0.5113	0.083*	
C4	0.0785 (4)	0.8582 (3)	0.27490 (12)	0.0316 (5)	
C8	0.2414 (4)	0.8503 (3)	0.20449 (13)	0.0306 (5)	
C12	0.1417 (4)	0.7172 (3)	0.13261 (13)	0.0352 (5)	
H12	-0.0275	0.6284	0.1292	0.042*	
C10	0.6380 (4)	0.9746 (3)	0.13859 (13)	0.0370 (5)	
H10	0.8073	1.0623	0.1400	0.044*	
С9	0.4953 (4)	0.9804 (3)	0.20526 (13)	0.0341 (5)	
Н9	0.5685	1.0726	0.2519	0.041*	
C3	0.1074 (4)	1.0373 (3)	0.32576 (12)	0.0332 (5)	
H3	0.2408	1.1501	0.3185	0.040*	

-0.0351 (4)	1.2460 (3)	0.43713 (14)	0.0394 (5)	
-0.1169 (4)	0.6893 (3)	0.28921 (14)	0.0384 (5)	
-0.1356	0.5674	0.2568	0.046*	
0.2897 (4)	0.7157 (3)	0.06729 (14)	0.0384 (5)	
0.2208	0.6260	0.0196	0.046*	
-0.2581 (4)	0.8815 (3)	0.39976 (14)	0.0410 (5)	
-0.3726	0.8898	0.4404	0.049*	
-0.0603 (4)	1.0497 (3)	0.38714 (13)	0.0349 (5)	
-0.2820(5)	0.7011 (3)	0.35072 (14)	0.0454 (6)	
-0.4108	0.5872	0.3595	0.054*	
0.2280 (3)	0.3289 (2)	0.18749 (10)	0.0466 (4)	
0.5525 (3)	0.3893 (2)	0.10947 (10)	0.0513 (5)	
0.3185 (4)	0.3064 (2)	0.12032 (11)	0.0355 (4)	
0.1696 (3)	0.1940 (2)	0.05948 (10)	0.0479 (5)	
	$\begin{array}{c} -0.0351 \ (4) \\ -0.1169 \ (4) \\ -0.1356 \\ 0.2897 \ (4) \\ 0.2208 \\ -0.2581 \ (4) \\ -0.3726 \\ -0.0603 \ (4) \\ -0.2820 \ (5) \\ -0.4108 \\ 0.2280 \ (3) \\ 0.5525 \ (3) \\ 0.3185 \ (4) \\ 0.1696 \ (3) \end{array}$	$\begin{array}{cccc} -0.0351 \ (4) & 1.2460 \ (3) \\ -0.1169 \ (4) & 0.6893 \ (3) \\ -0.1356 & 0.5674 \\ 0.2897 \ (4) & 0.7157 \ (3) \\ 0.2208 & 0.6260 \\ -0.2581 \ (4) & 0.8815 \ (3) \\ -0.3726 & 0.8898 \\ -0.0603 \ (4) & 1.0497 \ (3) \\ -0.2820 \ (5) & 0.7011 \ (3) \\ -0.4108 & 0.5872 \\ 0.2280 \ (3) & 0.3289 \ (2) \\ 0.5525 \ (3) & 0.3893 \ (2) \\ 0.3185 \ (4) & 0.3064 \ (2) \\ 0.1696 \ (3) & 0.1940 \ (2) \end{array}$	-0.0351(4) $1.2460(3)$ $0.43713(14)$ $-0.1169(4)$ $0.6893(3)$ $0.28921(14)$ -0.1356 0.5674 0.2568 $0.2897(4)$ $0.7157(3)$ $0.06729(14)$ 0.2208 0.6260 0.0196 $-0.2581(4)$ $0.8815(3)$ $0.39976(14)$ -0.3726 0.8898 0.4404 $-0.0603(4)$ $1.0497(3)$ $0.35072(14)$ $-0.2820(5)$ $0.7011(3)$ $0.35072(14)$ -0.4108 0.5872 0.3595 $0.2280(3)$ $0.3289(2)$ $0.18749(10)$ $0.5525(3)$ $0.3064(2)$ $0.12032(11)$ $0.1696(3)$ $0.1940(2)$ $0.05948(10)$	-0.0351(4) $1.2460(3)$ $0.43713(14)$ $0.0394(5)$ $-0.1169(4)$ $0.6893(3)$ $0.28921(14)$ $0.0384(5)$ -0.1356 0.5674 0.2568 $0.046*$ $0.2897(4)$ $0.7157(3)$ $0.06729(14)$ $0.0384(5)$ 0.2208 0.6260 0.0196 $0.046*$ $-0.2581(4)$ $0.8815(3)$ $0.39976(14)$ $0.0410(5)$ -0.3726 0.8898 0.4404 $0.049*$ $-0.0603(4)$ $1.0497(3)$ $0.35072(14)$ $0.0454(6)$ -0.4108 0.5872 0.3595 $0.054*$ $0.2280(3)$ $0.3289(2)$ $0.18749(10)$ $0.0466(4)$ $0.5525(3)$ $0.3893(2)$ $0.10947(10)$ $0.0513(5)$ $0.3185(4)$ $0.3064(2)$ $0.12032(11)$ $0.0355(4)$ $0.1696(3)$ $0.1940(2)$ $0.05948(10)$ $0.0479(5)$

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
N2	0.0348 (10)	0.0396 (9)	0.0369 (11)	0.0138 (7)	0.0154 (8)	0.0091 (8)
O2	0.0551 (11)	0.0408 (9)	0.0583 (11)	0.0013 (7)	0.0264 (9)	-0.0027 (7)
O1	0.0538 (11)	0.0479 (10)	0.0593 (12)	0.0076 (8)	0.0287 (9)	-0.0062 (8)
C4	0.0293 (11)	0.0351 (11)	0.0310 (12)	0.0097 (8)	0.0049 (9)	0.0057 (8)
C8	0.0289 (11)	0.0306 (10)	0.0345 (12)	0.0104 (8)	0.0059 (9)	0.0075 (8)
C12	0.0317 (11)	0.0327 (10)	0.0390 (13)	0.0057 (8)	0.0102 (10)	0.0017 (9)
C10	0.0311 (12)	0.0372 (11)	0.0440 (14)	0.0093 (9)	0.0066 (10)	0.0102 (10)
C9	0.0304 (11)	0.0353 (10)	0.0354 (12)	0.0077 (8)	0.0055 (9)	0.0038 (9)
C3	0.0312 (11)	0.0341 (10)	0.0318 (12)	0.0051 (8)	0.0053 (9)	0.0047 (9)
C1	0.0409 (13)	0.0431 (12)	0.0346 (12)	0.0113 (10)	0.0125 (10)	0.0052 (9)
C5	0.0415 (13)	0.0315 (11)	0.0394 (13)	0.0054 (9)	0.0124 (10)	0.0032 (9)
C11	0.0383 (13)	0.0349 (11)	0.0398 (13)	0.0077 (9)	0.0090 (10)	0.0015 (9)
C7	0.0411 (13)	0.0458 (12)	0.0350 (13)	0.0081 (10)	0.0160 (10)	0.0068 (10)
C2	0.0353 (12)	0.0375 (11)	0.0316 (12)	0.0097 (9)	0.0064 (10)	0.0041 (9)
C6	0.0453 (14)	0.0393 (12)	0.0457 (14)	-0.0001 (10)	0.0159 (11)	0.0071 (10)
O3	0.0551 (11)	0.0481 (9)	0.0378 (10)	0.0147 (7)	0.0171 (8)	0.0054 (7)
O5	0.0345 (10)	0.0517 (9)	0.0570 (11)	-0.0034 (7)	0.0119 (8)	0.0011 (8)
N1	0.0376 (11)	0.0296 (9)	0.0397 (11)	0.0085 (7)	0.0093 (9)	0.0061 (8)
O4	0.0348 (9)	0.0587 (10)	0.0393 (9)	0.0008 (7)	0.0076 (7)	-0.0064 (7)

Geometric parameters (Å, °)

N2—C11	1.338 (3)	С9—Н9	0.9300	
N2-C10	1.339 (3)	C3—C2	1.385 (3)	
N2—H2	0.8600	С3—Н3	0.9300	
O2—C1	1.263 (3)	C1—C2	1.487 (3)	
01—C1	1.267 (3)	C5—C6	1.377 (3)	
01—H1	0.8200	С5—Н5	0.9300	
C4—C3	1.391 (3)	C11—H11	0.9300	
C4—C5	1.398 (3)	C7—C6	1.388 (3)	
C4—C8	1.481 (3)	C7—C2	1.393 (3)	
C8—C12	1.392 (3)	С7—Н7	0.9300	

C2 C2	1 202 (2)		0.0200
	1.393 (3)		0.9300
	1.360 (3)	03—N1	1.235 (2)
C12—H12	0.9300	US—NI	1.240 (2)
C10—C9	1.364 (3)	NI—04	1.272 (2)
С10—Н10	0.9300		
C11—N2—C10	121.3 (2)	02—C1—O1	123.68 (19)
C11—N2—H2	119.4	O2—C1—C2	118.7 (2)
C10—N2—H2	119.4	O1—C1—C2	117.61 (19)
C1—O1—H1	109.5	C6—C5—C4	120.80 (19)
C3—C4—C5	118.4 (2)	С6—С5—Н5	119.6
C3—C4—C8	120.40 (18)	C4—C5—H5	119.6
C5—C4—C8	121.07 (17)	N2—C11—C12	120.49 (19)
C12—C8—C9	116.8 (2)	N2—C11—H11	119.8
C12—C8—C4	121.07 (18)	C12—C11—H11	119.8
C9—C8—C4	122.08 (18)	C6—C7—C2	119.0 (2)
C11—C12—C8	120.60 (19)	С6—С7—Н7	120.5
C11—C12—H12	119.7	С2—С7—Н7	120.5
C8—C12—H12	119.7	C3—C2—C7	120.33 (18)
N2—C10—C9	119.82 (19)	C3—C2—C1	119.46 (18)
N2—C10—H10	120.1	C7—C2—C1	120.2 (2)
C9—C10—H10	120.1	C5—C6—C7	120.6 (2)
С10—С9—С8	121.00 (19)	С5—С6—Н6	119.7
С10—С9—Н9	119.5	С7—С6—Н6	119.7
С8—С9—Н9	119.5	O3—N1—O5	122.40 (18)
C2—C3—C4	120.76 (18)	O3—N1—O4	119.71 (18)
С2—С3—Н3	119.6	O5—N1—O4	117.89 (19)
С4—С3—Н3	119.6		
C3 C4 C8 C12	-147.6(2)	C8 C4 C5 C6	-174.7(2)
$C_{5} = C_{4} = C_{8} = C_{12}$	147.0(2)	$C_{0} = C_{1} = C_{0} = C_{0}$	-0.6(3)
$C_{3} = C_{4} = C_{6} = C_{12}$	28.9(3)	$C_{10} = N_2 = C_{11} = C_{12}$	0.0(3)
$C_{5} = C_{4} = C_{8} = C_{9}$	-154.0(2)	$C_{0} = C_{12} = C_{11} = N_{2}$	11(3)
$C_{3} - C_{4} - C_{8} - C_{9}$	-134.0(2)	$C_{4} = C_{3} = C_{2} = C_{1}$	-176.26(10)
$C_{9} = C_{8} = C_{12} = C_{11}$	0.3(3)	C4 - C3 - C2 - C1	-1/0.20(19)
C4 - C6 - C12 - C11	1/7.82(19)	$C_{0} = C_{1} = C_{2} = C_{3}$	0.9(3)
$N_{2} = C_{10} = C_{9}$	0.0(3)	$C_0 - C_1 - C_2 - C_1$	1/0.2(2)
$N_2 = C_1 = C_2 = C_3$	0.0(3)	02C1C2C3	-10.7(3)
C12 - C8 - C9 - C10	-0.6(3)	01 - C1 - C2 - C3	108.5 (2)
$C_{4} - C_{8} - C_{9} - C_{10}$	-1/(.83(18))	02-01-02-07	1/2.0(2)
$C_{2} = C_{4} = C_{2} = C_{2}$	-2.4(3)	01 - 01 - 02 - 07	-9.0(3)
C_{3}	1/4.15 (18)	C4 - C5 - C6 - C/	0.1(4)
$C_{3}-C_{4}-C_{5}-C_{6}$	1.8 (3)	C2—C7—C6—C5	-1.5 (4)

Hydrogen-bond geometry (Å, °)

	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C10—H10…O4 ⁱ	0.93	2.42	3.225 (3)	145
C11—H11…O5 ⁱⁱ	0.93	2.49	3.122 (3)	125

			supplementary materials		
01—H1…O2 ⁱⁱⁱ	0.82	1.82	2.624 (2)	167	
N2—H2…O4 ⁱⁱ	0.86	1.89	2.748 (3)	174	

Symmetry codes: (i) *x*+1, *y*+1, *z*; (ii) -*x*+1, -*y*+1, -*z*; (iii) -*x*, -*y*+3, -*z*+1.